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Temperature fields in the shaft of an operating well are studied experimentally in a quasi-stationary approxi-
mation. The expressions for radial distributions of temperature and coefficients of heat transfer are obtained
with account for the dependence of the velocity of liquid flow on the radial coordinate. Calculations are made
for laminar and turbulent flows.

Study of temperature fields in liquid and gas flows in pipes is of importance for pipeline transportation of
heat carriers and products. However, their investigation in shafts of oil wells is of particular significance. On the one
hand, calculations of temperature fields in wells are important for prediction of paraffin deposits of the well walls; on
the other hand, this problem is a basic one in thermal coring, which is widely used in practice in studying wells and
beds.

Nonstationary temperature fields in the shaft of the well and the surrounding medium mutually affect each
other. The equalities of temperatures and heat fluxes on pipe walls (boundary conditions of the fourth kind) are natural
boundary conditions that determine this interaction. Since solution of conjugate problems presents fundamental difficul-
ties, the problem in a precise formulation was replaced by a simpler one. The first approach was developed by V. G.
Shukhov and A. Yu. Namiot [1], who suggested using the Newton formula for heat transfer on a surface and took the
coefficient of heat exchange between the flow in the well and the surrounding rocks as time-independent. E′ . B. Cheka-
lyuk used an integral method to take into account heat exchange between the flow and the surrounding rocks and
specified heat flux in the form of convolution [2]; it is this approach within the framework of which A. N. Salamatin
made his studies [3]. Other researchers [4–6] also referred to the problem under discussion, but all of them considered
the problem only for a mean temperature in the well shaft. At the same time, use of thermal studies in the practice
of development of oil-gas deposits aggravated the problem of calculation of radial temperature dependences in the
well. This is related to the fact that a thermometer, which was run into the well on a cable along the shaft of the well
and more often close to its wall, in some cases moves away from the latter, thus approaching the well axis. Therefore,
it is essential to know radial temperature distributions in the flow in order to predict the thus-arising temperature
anomalies. However, the study of radial temperature distributions in liquid or gas flows in the well shaft is of inde-
pendent importance for development of new methods of coring based on measurements of the dependence of tempera-
ture on the distance to the well axis. However, at present there is no acceptable theory of temperature effects under
these conditions.

In this paper, we made an attempt to construct a theory of thermal processes in a well on the basis of a
quasi-stationary approximation that lies in the fact that the differential equations for temperature are taken to be sta-
tionary and time enters into the considered problem parametrically. It is shown that this approach allows one to de-
velop new methods of calculation of radial temperature distributions in a flow.

In the problem it is assumed that (a) the surrounding medium is homogeneous and anisotropic, (b) the tem-
perature of the distant parts of rocks changes with depth according to the linear law, and (c) the region of depths
where seasonal oscillations of temperature on the surface do not penetrate is considered. It is taken that only the com-
ponent of the velocity along the well axis differs from zero; this component depends only on the distance to the well
axis v = v(r) = v0υ(r) and so on.
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Mathematical Formulation of the Problem and Its Solution. The formulation of the problem under the as-
sumption of an axial symmetry includes the heat-conduction equation in the mass surrounding the pipe
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and the equation of convective thermal conductivity of the fluid (in the general case, multiphase) with sources in the
pipe
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The expression for the density of sources

q1 = − ηcρ2
gv0υ (r) − ε1µcρv0

2
 (υ′′  + υ′ ⁄ r) υ (r) − Lα1gρρsvs0υ (r) = q0υ (r) (3)

includes the following terms: –ηcρ2gv0 (describes an adiabatic effect in an ascending flow), −ε1µcρv0
2υ(υ′′  + υ′/r) (cor-

responds to heat releases due to internal friction), and −Lα1gρρsvs0υ(r) (allows for the temperature effect of phase
transitions due to liberation of the dissolved gas). At the boundary of the pipes and the surrounding mass the condi-
tions of the equality of temperatures
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and heat fluxes
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are specified. For the sake of simplicity, we consider the case where the coordinate z of the vector of the temperature
gradient is constant; in the literature it has the conventional name of the "case of constant gradients":

∂θ
∂zd

 = 
∂θ1

∂zd
 = const . (6)

This allows one to abstract oneself from the account of boundary conditions at certain values of the coordinate z;
moreover, Eqs. (1) and (2) are simplified since the second derivative with respect to the coordinate z vanishes.

The boundary conditions correspond to the Earth’s natural undisturbed temperature, which increases with
depth zd according to the linear law; this temperature coincides with the temperature at the points of the surrounding
mass, which lie at a distance from the pipe:

θ1 rd=R(τ) = T01 − Γzd . (7)

We consider a quasi-stationary approximation that consists of the fact that the differential equations for tem-
perature are taken to be stationary. However, time enters into the considered problem parametrically in terms of the
radius of the zone of thermal effect of the well R(τ), which is determined by the method of successive change-over of
stationary states. The equation for determination of R(τ) is constructed on the basis of balance relations for the amount
of heat. In the problem under consideration it has the form
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The sought-for solution is superimposed by the symmetry condition that lies in the fact that the derivative with respect
to the radial coordinate on the z axis (at the center of the well) vanishes.

Using the relations r = rd
 ⁄ r0, R = Rd

 ⁄ r0, T1 = (θ1 − T01 + Γzd)/θ0, T = (θ − T01 + Γzd)/θ0, t = τλ1r/(ρ1c1r0
2),
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 ⁄ D, ε = λ1r

 ⁄ λr, and χ = c1ρ1/(cρ), we reduce problem (1)–(8) to the dimensionless form
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T1 rd=R(t) = 0 , (13)

where Pe = v0r0
 ⁄ a1r is the Peclet number; Λ(r)  = 1 + λrt(r)/λr, G = Γvr0

2/(a1rθ0) = PeγΓDυ(r)/θ0, q = r0
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×(r)/(cρθ0a1r) = −Pe γΓDδυ(r)/θ0, δ = ηρg + ε1µv0(υ′′  + υ′ ⁄ r) + Lαgρsvs0/(cv0))/Γ,  and q0 = −(ηcρ2gv0 + ε1µcρv0
2×

×(υ′′ + υ′ ⁄ r) + Lαgρρsvs0). It follows from these formulas that it is expedient to take ΓD as θ0. The equation for the
dimensionless radius of the zone of thermal effect of the well R(τ) is represented as
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By virtue of the theorem on maximum and minimum values of the solutions of Eqs. (9) and (10) and with
account for condition (13) we can easily find that the derivative with respect to z of the sought-for solution is zero in
both regions if the density of sources does not depend on the vertical coordinate. Therefore, the problem solution is
constructed provided that

∂T1

∂z
 = 
∂T

∂z
 = 0 . (15)

The analytical solution of the problem is constructed in this formation. Solution of Eq. (9) with account for condition
(11) is presented in the form

T1 = − T (r = 1) 
ln (r ⁄ R)
ln (R)

 , (16)

and that of Eq. (10) with account for condition (15) as
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T = T (r = 1) − ε (1 − δ) Pe γΓD
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It follows from the obtained expression that the difference of temperatures between any point of the well and the wall
does not depend on time. The value of the temperature at the boundary T(1) = T(r = 1) is determined from the bound-
ary condition (12) after substitution of relations (16) and (17) into it:
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The expression for temperature in the surrounding medium (16) after substitution of (18) into it takes on the form
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and in the well (17) becomes
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The expression for the radius of the zone of thermal effect of the well R = R(t), which enters into (19) and (20), is
determined from (14) after substitution of (19) into it. Solution of the thus-obtained differential equation leads to an
implicit dependence of the radius of the zone of thermal effect of the well on time:

R
2
 − 2 ln R = 1 + 4t . (21)

Expressions (19)–(21) are the unknown solution of problem (9)–(14) for an arbitrary velocity distribution v = v0υ(r).

We note that if v0 is the mean velocity, then the integral ∫ 
0

1

r′υ(r′)dr′ in (19) and (20) and in what follows must be

replaced by its exact value 1/2.
The heat-transfer coefficient is determined as the ratio of the heat flux through the unit length surface of the

pipe to the mass-mean (over the pipe cross section) value of temperature; then, with account for (19) and (20), we
have
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The thus-determined heat-transfer coefficient differs from the coefficient of heat transfer
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which in the problem under consideration does not depend on time, since (23) does not include R(t).
Partial Cases. The obtained solution allows one to construct computational relations for temperature fields of

laminar and turbulent flows. If the velocity and thermal diffusivity in a pipe do not depend on the radial coordinate,
we have
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υ (r) = 1 ,   Λ = 1 . (24)

Substitution of (24) into (19) and (20) allows one to transform them as
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Since v0 is an averaged velocity, the mass-mean value of temperature in the well in the case of a constant velocity
profile has the form
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and the expression for the heat-transfer coefficient is

kv = 
8πλ1r

ε + 4 ln R (28)

and in combination with (21) it determines the dependence of kv on time. In this case, the heat-transfer coefficient is
determined by the following simple expression: α = 4λr

 ⁄ r0. According to (25), the difference of temperatures between
the wall and the well center does not depend on time and the well radius; it is proportional to the output of the fluid
Q and the geothermal gradient Γ and is in inverse proportion to the coefficient of thermal diffusivity ar:
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For a laminar flow, the velocity distribution in the pipe is a parabola and the turbulent component of thermal
conductivity is absent; therefore
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2) ,   Λ = 1 . (30)

Substitution of (30) in (19) and (20) allows one to transform them as
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The mass-mean value of temperature in the well in the case of a laminar flow has the form
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and the expression for the heat-transfer coefficient
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klam = 
48πλ1r

11ε + 24 ln R
(34)

in combination with (21) determines the dependence of this coefficient on time for a laminar flow. In this case, the
heat-transfer coefficient is determined by the following simple expression: α = 24λr/(11r0), which coincides with that
found in [7]. The difference of temperatures between the wall and the well center in a laminar flow is 1.5 times
greater than in the previous case and differs only by the factor

∆θlam = 
3v0r0

2Γ
8ar

 (1 − δ) = 
3QΓ
8πar

 (1 − δ) . (35)

Calculations for a turbulent flow in the pipe are made by the implicit Spalding equation for velocity distribu-
tion [7]
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and thermal conductivity with account for the turbulent component
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where y1 = (1 − r)r0√τ0ρ  ⁄ µ, u = v0
 ⁄ √ τ0

 ⁄ ρ , κ = 0.407, and E = 10.
Discussion of the Calculation Results. Figure 1 presents the radial dependences of the relative temperature

difference between the wall and the points inside the well T
~

 = (T(r) − T(1))/(T(0) − T(1)), T(0) = T(r = 0), and T(1)
= T(r = 1). We note that this parameter does not depend on the geothermal gradient and is determined only by the
velocity (and thermal conductivity) field of the liquid in the flow. It follows from the figure that the temperature pro-
file is more leveled at the center of the turbulent flow (curve 3), and in this case, maximum values of the gradient are
observed in the zone close to the wall. The turbulent component of thermal conductivity is the main reason for this
leveling. The velocity profile slightly affects radial distributions of the relative temperature. This can be checked by
comparison of curves 1 and 2 calculated for a laminar flow and the hypothetical case of constant velocity over the
flow cross section, respectively; these curves turn out to be unexpectedly close. We note that absolute values of the
differences of temperature between the wall and the well axis are maximum for a laminar flow and minimum for a
turbulent flow.

Figure 2 shows a comparison of the relative temperature T
^
 = T2χθ0/(Pe γΓD) for a laminar flow and the hy-

pothetical case of constant velocity over the flow cross section depending on the radial coordinate in the well and the
surrounding rocks. In the calculations we took ε = 4. Comparison of curves 1 and 2 calculated for dimensionless time

Fig. 1. Dependence of the relative temperature on the radius: 1) laminar flow;
2) constant velocity; 3) turbulent flow.
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t = 1 and curves 3 and 4 for t = 20 indicates the increase in the relative temperature with time. Values of the relative
temperature in the hypothetical case of constant velocity (curves 1 and 3) in the well are lower than in a laminar flow
(curves 2 and 4). It follows from the figure that in the two cases the temperature fields in the surrounding mass co-
incide.

Figure 3 presents the results of calculation of the heat-transfer coefficient for laminar and turbulent flows and
the hypothetical case of constant velocity over the flow cross section as a function of time. In the calculations, the
thermal conductivity of the surrounding mass is taken to be λ = 2 W/(m⋅K). Values of the heat-transfer coefficient are
minimum for a laminar flow and maximum for a turbulent flow.

We note that the quasi-stationary approximation used allowed construction of the relations that are essential
for calculation of the temperature fields in the wells and, in particular, for the radial distributions of temperature of
laminar and turbulent flows.

This work was carried out with financial support from the Russian Foundation for Basic Research, grant 02-
01-97908 2002AG.

NOTATION

ar and a1r, coefficients of radial thermal diffusivity of the fluid and the surrounding rocks, respectively,
m2/sec; c and c1, specific heat capacity of the fluid and the surrounding rocks, respectively, J/(K⋅kg); D, depth of the
well, m; g, free-fall acceleration, m/sec2; k, coefficient of heat transfer in the well, W/(m⋅K); L, heat of phase transi-
tion, J/kg; Q, output of the well, m3/sec; rd, zd and r, z, dimensional and dimensionless cylindrical coordinates, respec-
tively, m; r0, well radius, m; R, radius of the zone of thermal effect of the well, m; T, dimensionless temperature of
the fluid; T1, dimensionless temperature of the mass; T01, natural temperature in the plane z = 0, K; y, integration vari-
able; v, velocity of liquid in the pipe, m/sec; v0, mean velocity of liquid, m/sec; vs0, mean velocity of liquid at satu-
ration pressure, m/sec; α, heat-transfer coefficient, W/(m2⋅K); α1, coefficient of gas solubility, 1/Pa; Γ, geothermal
gradient, K/m; ε1, Joule–Thomson coefficient, K/Pa; η, adiabatic coefficient, K/Pa; θ, temperature of the fluid, K; θ1,
temperature of the surrounding bed, K; λr and λz, coefficients of thermal conductivity of flow along the axes r and z,
W/(m⋅K); λ1r and λ1z, coefficients of thermal conductivity along the axes r and z in the bed, W/(m⋅K); µ, viscosity,
Pa⋅sec; υ(r), function of radial velocity distribution; ρ and ρ1, densities of the fluid and the surrounding rocks, respec-
tively, kg/m3; ρs, density of the fluid at pressure of saturation, kg/m3; τ and t, dimensional and dimensionless time,
sec; τ0, stress, Pa. Indices: v, leveled velocity profile; d, dimensional; lam, laminar; s, gas saturation; t, turbulent.
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